1,277 research outputs found

    AHS2005: The 2005 airborne imaging spectroscopy campaign in the Millingerwaard, the Netherlands

    Get PDF
    The Millingerwaard was one of the first nature rehabilitation projects for river floodplains in the Netherlands. It therefore serves as an example project for other floodplain rehabilitation projects. As a consequence a lot of effort has been put in monitoring the vegetation succession in the floodplain. To stimulate the development of a heterogeneous landscape, a low grazing density of 1 animal (e.g., Galloway, Koniks) per 2-4 ha has been chosen. This density allows grazing whole year round and also development of forest is possible. The surface area of water changes over the year. During high floods, the whole floodplain except for the higher parts of the river dunes is flooded. This report describes the field and airborne data acquired during the AHS2005 imaging spectroscopy campaign in the Millingerwaard floodplain during the summer of 2005. The campaign is part of a research line that explores the use of hyperspectral sensors to retrieve biochemical and biophysical variables as input for ecological models using an integrated approac

    Using hyperspectral remote sensing data for retrieving canopy water content

    Get PDF
    Canopy water content (CWC) is important for understanding functioning of terrestrial ecosystems. Spectral derivatives at the slopes of the 970 nm and 1200 nm water absorption features offer good potential as estimators for CWC. An extensively grazed fen meadow is used as test site in this study. Results are compared with simulations with the PROSAIL radiative transfer model. The first derivative at the left slope of the feature at 970 nm is found to be highly correlated with CWC and the relationship corresponds to the one found with PROSAIL simulations. Use of the derivative over the 940 – 950 nm interval is suggested. In order to avoid interference with absorption by atmospheric water vapour, the potential of estimating CWC using the first derivative at the right slope of the 970 nm absorption feature is recommended. Correlations are a bit lower than those at the left slope, but better than those obtained with water band indices, as shown in previous studies. FieldSpec measurements show that one may use derivatives around the middle of the right slope within the interval between 1015 nm and 1050 nm

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Using the right slope of the 970 nm absorption feature for estimating canopy water content

    Get PDF
    Canopy water content (CWC) is important for understanding the functioning of terrestrial ecosystems. Biogeochemical processes like photosynthesis, transpiration and net primary production are related to foliar water. The first derivative of the reflectance spectrum at wavelengths corresponding to the left slope of the minor water absorption band at 970 nm was found to be highly correlated with CWC and PROSAIL model simulations showed that it was insensitive to differences in leaf and canopy structure, soil background and illumination and observation geometry. However, these wavelengths are also located close to the water vapour absorption band at about 940 nm. In order to avoid interference with absorption by atmospheric water vapour, the potential of estimating CWC using the first derivative at the right slope of the 970 nm absorption feature was studied. Measurements obtained with an ASD FieldSpec spectrometer for three test sites were related to CWC (calculated as the difference between fresh and dry weight). The first site was a homogeneous grassland parcel with a grass/clover mixture. The second site was a heterogeneous floodplain with natural vegetation like grasses and various shrubs. The third site was an extensively grazed fen meadow. Results for all three test sites showed that the first derivative of the reflectance spectrum at the right slope of the 970 nm absorption feature was linearly correlated with CWC. Correlations were a bit lower than those at the left slope (at 942.5 nm) as shown in previous studies, but better than those obtained with water band indices. FieldSpec measurements showed that one may use any derivative around the middle of the right slope within the interval between 1015 nm and 1050 nm. We calculated the average derivative at this interval. The first site with grassland yielded an R2 of 0.39 for the derivative at the previously mentioned interval with CWC (based on 20 samples). The second site at the heterogeneous floodplain yielded an R2 of 0.45 for this derivative with CWC (based on 14 samples). Finally, the third site with the fen meadow yielded an R2 of 0.68 for this derivative with CWC (based on 40 samples). Regression lines between the derivative at the right slope of the 970 nm absorption feature and CWC for all three test sites were similar although vegetation types were quite different. This indicates that results may be transferable to other vegetation types and other site

    Monitoring of Natura 2000 sites using hyperspectral remote sensing : quality assessment of field and airborne data for Ginkelse & Ederheide and Wekeromse Zand

    Get PDF
    In 2007, an airborne imaging spectroscopy campaign was organized in the frame of the HABISTAT project. Airborne data with the AHS sensor were acquired in the Netherlands and Belgium. One test site in Belgium was recorded, the Kalmthoutse Heide and one in the Netherlands: the Edese and Ginkelse Heide and the Wekeromse Zand. This report describes the quality assessment of the field and airborne data for the Edese and Ginkelse Heide and the Wekeromse Zand site. The results for the Kalmthoutse Heide will be presented in a separate report (INBO, 2008)

    Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia

    Get PDF
    There is a growing concern about food security and sustainability of agricultural production in developing countries. However, there are limited attempts to quantify agro-biodiversity losses and relate these losses to soil degradation and crop productivity, particularly in Tigray, Ethiopia. In this study, spatial variation in agro-biodiversity and soil degradation was assessed in 2000 and 2005 at 151 farms in relation to farm, productivity, wealth, social, developmental and topographic characteristics in Tigray, northern Ethiopia. A significant decrease in agro-biodiversity was documented between 2000 and 2005, mainly associated with inorganic fertilizer use, number of credit sources and proximity to towns and major roads. Agro-biodiversity was higher at farms with higher soil fertility (available P and total N) and higher productivity (total caloric crop yield). Low soil organic matter, few crop selection criteria and steep slopes contributed to soil erosion. Sparsely and intensively cultivated land use types, as determined from satellite images, were associated with high and low agro-biodiversity classes, respectively, as determined during on-farm surveys in 2005. This study gives insight into the recent changes in and current status of agro-biodiversity and soil degradation at different spatial scales, which can help to improve food security through the maintenance of agro-biodiversity resource

    Predicted and Observed Lateral Deformations of Anchored Retaining Walls

    Get PDF
    Backanalysis of deflection measurements for a diaphragm and a sheet pile wall in Holland has shown that the results are mostly sensitive to the profile of coefficients of subgrade reaction. A sensitivity study performed to compare the wall deflections calculated with the Menard and Terzaghi theory shows that the moduli according to Menard produces best agreement. The analyses were carried out using a one dimensional finite element programme. It is shown that displacement measurements obtained from easy to perform inclinometer surveys

    Object identification and characterization with hyperspectral imagery to identify structure and function of Natura 2000 habitats

    Get PDF
    Habitat monitoring of designated areas under the EU Habitats Directive requires every 6 years information on area, range, structure and function for the protected (Annex I) habitat types. First results from studies on heathland areas in Belgium and the Netherlands show that hyperspectral imagery can be an important source of information to assist the evaluation of the habitat conservation status. Hyperspectral imagery can provide continuous maps of habitat quality indicators (e.g., life forms or structure types, management activities, grass, shrub and tree encroachment) at the pixel level. At the same time, terrain managers, nature conservation agencies and national authorities responsible for the reporting to the EU are not directly interested in pixels, but rather in information at the level of vegetation patches, groups of patches or the protected site as a whole. Such local level information is needed for management purposes, e.g., exact location of patches of habitat types and the sizes and quality of these patches within a protected site. Site complexity determines not only the classification success of remote sensing imagery, but influences also the results of aggregation of information from the pixel to the site level. For all these reasons, it is important to identify and characterize the vegetation patches. This paper focuses on the use of segmentation techniques to identify relevant vegetation patches in combination with spectral mixture analysis of hyperspectral imagery from the Airborne Hyperspectral Scanner (AHS). Comparison with traditional vegetation maps shows that the habitat or vegetation patches can be identified by segmentation of hyperspectral imagery. This paper shows that spectral mixture analysis in combination with segmentation techniques on hyperspectral imagery can provide useful information on processes such as grass encroachment that determine the conservation status of Natura 2000 heathland areas to a large extent. A limitation is that both advanced remote sensing approaches and traditional field based vegetation surveys seem to cause over and underestimations of grass encroachment for specific categories, but the first provides a better basis for monitoring if specific species are not directly considered
    corecore